🧬 nonlinear-causal#

nonlinear-causal is a Python module for nonlinear causal inference, including hypothesis testing and confidence interval for causal effect, built on top of two-stage methods.
GitHub repo: https://github.com/statmlben/nonlinear-causal
Documentation: https://nonlinear-causal.readthedocs.io
Open Source: MIT license
Paper: pdf
The proposed model is:

\[\text{(Stage 1)} \quad \phi(x) = \mathbf{z}^\prime \boldsymbol{\theta} + w, \qquad \text{(Stage 2)} \quad y = \beta \phi(x) + \mathbf{z}^\prime \boldsymbol{\alpha} + \epsilon\]
🎯 What We Can Do#
Estimate marginal causal effect \(\beta\)
Hypothesis testing (HT) and confidence interval (CI) for marginal causal effect \(\beta\).
Estimate nonlinear causal link \(\phi(\cdot)\).
#️⃣ Reference#
If you use this code please star 🌟 the repository and cite the following paper:
Dai, B., Li, C., Xue, H., Pan, W., & Shen, X. (2022). Inference of nonlinear causal effects with GWAS summary data. arXiv preprint arXiv:2209.08889.
@article{dai2022inference,
title={Inference of nonlinear causal effects with GWAS summary data},
author={Dai, Ben and Li, Chunlin and Xue, Haoran and Pan, Wei and Shen, Xiaotong},
journal={arXiv preprint arXiv:2209.08889},
year={2022}
}